

Operational Manual

Operational Manual - Rev. 1.03-082013

Table of Contents

Operational Manual - Rev. 1.02-052013

Table of Contents2
GimaGO easy – Overview4
Scope of Delivery5
Legal Notice
Safety Precautions7
Usage Notes11
System Requirements14
Specifications16
Outline16
Image Sensors
Interfaces
Connection20
Connector Pin Assignment22
I/O Specification
Timing Specification
Functions
Overview
DeviceControl
Scalable
Binning
PixelFormat
TestImageSelector
AcquisitionControl
TriggerControl
ExposureControl
DigitalIOControl
TimerControl
EventControl

Gain	52
BlackLevel	54
Gamma	55
LUTControl	56
TransportLayerControl	57
UserSetControl	61
ALCControl	63
Technical Support	68

GimaGO easy

Overview

NET's basic GigE camera line "GimaGO easy" is designed for users who aim at digital image capturing with a solid, easy-to-use and low budget camera. For this, its hardware and software offer maximum integration capabilities due to full GigE vision and GenIcam compliancy. The camera meets the expectations of a wide range of industrial applications such as factory automation, quality control, inspection, code and symbol recognition, and surveillance.

Image sensors					
model	GE126B	GE136B	GE323B	GE422B	
resolution (HxV) [px]	659 x 494/VGA	659 x 494/VGA	1034 x 779 /XGA	1296 x 966/SXGA	
sensor type	all pixel data rea	all pixel data readout interline transfer CCD			
image sensor	ICX424AL	ICX414AL	ICX204AL	ICX445AL	
sensor size	1/3"	1/2"	1/3"	1/3"	
frame rate [fps]	125	125	40	30	
Camera			- I		
lens mount	C-mount				
dimension (WxHxD) [mm]	29 x 29 x 40				
weight [g]	53	53			
power supply	PoE (IEEE802.3af	PoE (IEEE802.3af conformity) or DC 12 V +/- 10%			
power requirements	PoE: max. 3.8 W,	PoE: max. 3.8 W, DC 12 V: max. 2.9 W			
operating temperature [°C]	0 to 40	0 to 40			
operating humidity [%]	≤ 90	≤ 90			
Interfaces					
standard Ethernet connector		RJ45 with screw locking, Gigabit Ethernet according to GigE vision standard / 1Gbps IEEE802.3ab conformity			
cable connector	Hirose 6 pin, 12	Hirose 6 pin, 12 V +/- 10%			
digital input/output	GPIO_0 Output (external trigger input = opto coupled (open collector) GPIO_0 Output (LVTTL) GPIO_1 Output (open collector)			
Features	-	auto exposure mode (AE), auto gain control (AGC), selectable packet size (jumbo frame), packet delay			
Software Development Kit (SDK)	: SynView complian	t with GigE vision, G	enTL and Genlcam (with XML files)	
supported image processing libraries	Halcon, Imaging consumer)	Halcon, Imaging Library, VisionPro, LabView Vision, matlab (and all GenTL consumer)			
supported operating systems	Windows XP (32	Windows XP (32 bit), Windows 7 (32/64 bit), Linux (32/64 bit)			
SDK features		camera calibration, preview, image evaluation, code examples (C, C++, .NET environment)			
regulations	CE, FCC, RoHS, C	CE, FCC, RoHS, Chinese RoHS			

Please note that all data and illustrations are subject to error, change and omissions without notice.

Operational Manual - Rev. 1.02-052013

Scope of Delivery

<u>Content</u>

- GimaGO easy housing camera
- CD-ROM including:
 - manuals
 - driver
 - Software Development Kit (SDK) with viewer software
 - data sheet

Optionally available

- lockable GigE cable
- C-mount lenses
- illumination

Legal Notice

This equipment has been tested and found to comply with the limits for a class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communication. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be require to correct the interference at his own expense.

For customers in Europe

This apparatus has been certified to meet or exceed the standards for CE compliance per the Council Directives. Pertinent testing documentation is available for verification.

Safety Precautions

Before using this product, read these safety precautions carefully. Important information is shown in this Operational Manual to protect users from injuries and property damages, and to enable them to use the product safely and correctly.

Please be sure to thoroughly understand the meanings of the following signs and symbols before reading the main text that follows, and observe the instructions given herein.

Safety Signs	Description
WARNING	Indicates a potentially hazardous situation that may result in death or serious injury (*1) in the event of improper handling.
	Indicates a potentially hazardous situation that may result in light to moderate injuries (*2) or only in property damage (*3) in the event of improper handling.

<u>Notes</u>

Operational Manual - Rev. 1.02-052013

*1:"Serious injury" refers to cases of loss of eyesight, wounds, burns (high or low temperature), electric shock, broken bones, poisoning, etc., which leave after-effects or which requires hospitalization or a long period of outpatient treatment of cure.

*2:"Light to moderate injuries" refers to injuries, burns, electric shock etc. that do not require hospitalization or long-term treatment.

*3:"Property damage" refers to cases of extensive damage involving damage to buildings, equipment, farm animals, pet animals and other belongings.

Safety Symbols	Description
	This sign indicates PROHIBITION (Do not). The content of prohibition is shown by a picture or words beside the symbol.
MANDATORY	This sign indicates MANDATORY ACTION (You are required to do). The content of action is shown by a picture or words beside the symbol.

General Handing

Operational Manual - Rev. 1.02-052013

Observe the following when installing the equipment:Do not cover the equipment with a cloth, etc.Do not place the equipment in a narrow location where heat is likely to accumulate.Otherwise, heat will accumulate inside the equipment, possibly resulting in a fire.

• Do not place the equipment in locations subject to high moisture, oil fumes, steam, or dust. Otherwise, fire or electric shock may result.

 Do not install the equipment in locations exposed to direct sunlight or humidity. Otherwise, the internal temperature of the equipment will rise, which may cause a fire.

• Use only specified the power cable and the connection cables. Otherwise, fire or electric shock may result.

• Do not give strong impact against the equipment. It may cause the trouble.

 When performing connection, turn off power. When connecting the power cable and the connection cable, turn off the equipment power. Otherwise, fire or electric shock may result.

• Do not expose the camera head to any intensive light (such as direct sunlight). Otherwise, its inner image pickup device might get damaged.

Operational Manual - Rev. 1.02-052013

• Avoid short-circuiting signal output. Otherwise, a malfunction may occur.

Avoid

• Avoid giving a strong shock against the camera body. It might cause a breakdown or damage. If your camera is used in a system where its camera connector is subjected to strong repetitive shocks, its camera connector is possible to break down. If you intend to use your camera in such a situation, if possible, bundle and fix a camera cable in the place near the camera, and do not transmit a shock to the camera connector.

GimaGO easy

Handle carefully

Do not drop the equipment or allow it to be subject to strong impact or vibration, as such action may cause malfunctions. Further, do not damage the connection cable, since this may cause wire breakage.

Environmental operating conditions

Do not use the product in locations where the ambient temperature or humidity exceeds the specifications. Otherwise, image quality may be degraded or internal components may be adversely affected. In particular, do not use the product in areas exposed to direct sunlight. Moreover, during shooting under high temperatures, vertical stripes or white spots (noise) may be produced, depending on the subject or camera conditions (such as increased gain). However, such phenomena are not malfunctions.

Check a combination with the lens

Depending on the lens and lighting you use, an image is reflected as a ghost in the imaging area. However, this is not because of a fault of the camera. In addition, depending on the lens you use, the performance of the camera may not be brought out fully due to deterioration in resolution and brightness in the peripheral area, aberration and others. Be sure to check a combination with the camera by using the lens and lightning you actually use. When installing a lens in the camera, make sure carefully that it is not tilted. In addition, use a mounting screw free from defects and dirt. Otherwise, the camera may be unable to be removed. Install a next lens; its dimension of protrusion from bottom of the screw is equal to or less than 10 mm. If a lens does not stand to this condition, it might not be installed to this camera.

Operational Manual - Rev. 1.02-052013

Do not shoot under intense light

Avoid intense light such as spot lights on part of the screen because it may cause blooming or smears. If intense light falls on the screen, vertical stripes may appear on the screen, but this is not a malfunction.

Dropping Frames

Depends on your PC or Gigabit Ethernet interface board configurations, images may not be captured properly (e.g. dropping frames). In this case, change to frame rate setting lower.

Do not expose the camera's image-pickup-plane to sunlight or other intense light directly. Its inner CCD (charge-coupled device) might be damaged.

Occurrence of moiré

If you shoot thin stripe patterns, moiré patterns (interference fringes) may appear. This is not a malfunction.

Occurrence of noise on the screen

If an intense magnetic or electromagnetic field is generated near the camera or connection cable, noise may be generated on the screen. If this occurs, move the camera or the cable.

Handling of the protective cap

If the camera is not in use, attach the lens cap to the camera to protect the image pickup surface.

If the equipment is not to be used for a long duration

Turn off power to the camera for safety.

Maintenance

Turn off power to the equipment and wipe it with a dry cloth. If it becomes severely contaminated, gently wipe the affected areas with a soft cloth dampened with diluted neutral detergent. Never use alcohol, benzene, thinner, or other chemicals because such chemicals may damage or discolor the paint and indications. If the image pickup surface becomes dusty, contaminated, or scratched, consult your sales representative.

Disposal

Operational Manual - Rev. 1.02-052013

When disposing of the camera, it may be necessary to disassemble it into separate parts, in accordance with the laws and regulations of your country and/or municipality concerning environmental contamination. This product is marked this symbol to subject to EU Waste Electrical & Electronic Equipment (WEEE) directive.

Following information is only for EU-member states:

The use of the symbol indicates that this product may not be treated as household waste. By ensuring this product is disposed correctly, you help to prevent potential negative consequences for the environment and human health, which could otherwise be caused by inappropriate waste handling of this product. For more detailed information about the takeback and recycling of this product, please contact your supplier where you purchased the product.

GimaGO easy

"This symbol is applicable for EU member states only."

System Requirements

SynView – Software Development Kit (SDK)

compliancy	GigE vision, GenTL and GenIcam (with XML files)
supported image processing libraries	Halcon, Imaging Library, VisionPro, LabView Vision, matlab (and all GenTL consumer)
supported operating systems	Windows XP (32 bit), Windows 7 (32/64 bit), Linux (32/64 bit)

Environment

Operating Assurance

Temperature:	0°C ~ 40°C, Camera housing temperature: less than 50°C
Humidity:	10% ~ 90% (no condensation)

Storage Assurance

Temperature:	-20°C ~ 60°C
Humidity:	90% or less (no condensation)

Notes on Heat Radiation:

The temperature of camera housing must be kept less than 50 °C. Please provide sufficient heat radiation depending on your installation.

EMC Conditions

Operational Manual - Rev. 1.02-052013

- EMI (Electro-Magnetic Interference): EN61000-6-4

FCC Part 15 Subpart B Class A

- EMS (Electro-Magnetic Susceptibility): EN61000-6-2

GimaGO easy

Please note that all data and illustrations are subject to error, change and omissions without notice.

Notes on Conformity of the EMC:

The adaptability of the safety standard of this camera is assured in the condition of combination with the following parts:

<< PoE operation>>

PoE Switch GS108P-100AJS LAN Cable C5e(S-HFR)(K)-* (NETGEAR Inc.) (Oki Electric Cable Co., Ltd.)

<< DC operation>>

DC Cable	PS-A15D3-12MP-6-GE	(ser. no. 0800690000)
LAN Cable	C5e(S-HFR)(K)-*	(Oki Electric Cable Co., Ltd.)

Please check the EMC applicability when it combines with parts other than them.

Specifications

<u>Outline</u>

23.7

15

[Unit:mm)

Image Sensors

	GE126B	G136B	GE323B	GE422B		
resolution (HxV) [px]	659 x 494 / VGA	659 x 494 / VGA	1034 x 779 / XGA	1296 x 966 / SXGA		
	CCD	CCD	CCD	CCD		
sensor	all-pixel-data-readout interline transfer CCD					
image sensor	ICX424AL	ICX424AL ICX414AL ICX204AL ICX445AL				
sensor size	1/3"	1/2"	1/3"	1/3"		
pixel size [µm]	7.40 x 7.40	9.90 x 9.90	4.65 x 4.65	3.75 x 3.75		
aspect ratio	4: 3	4:3				
frame rate [fps]	125	125	40	30		
shutter	global					
shutter speed	10 µs - 16 s	10 µs - 16 s	30 µs - 16 s	30 µs - 16 s		
data path	monochrome 8 bit or 10 bit					
binning	2 x 2					
partial scan	ROI					
	50.000MHz	50.000MHz	45.000MHz	50.000MHz		
base clock frequency	±100ppm	±100ppm	±100ppm	±100ppm		
Standard subject	1700lx	1700lx	1700lx	1300lx		
illuminance	(F5.6, 1/125s)	(F5.6, 1/125s)	(F5.6, 1/40s)	(F8, 1/30s)		
minimum subject illuminance (*1)	7lx	7lx	7lx	3lx		
number of video out pixels (H) × (V)	640 × 480	640 × 480	1024 × 768	1280 × 960		

Typical Spectral Response

Operational Manual - Rev. 1.02-052013

The lens characteristics and light source characteristics is not reflected in table.

Interfaces

standard Ethernet connector	RJ45 with screw locking, GigEVision Camera Interface Standard for Machine Vision Ver 1.2/ 1 Gbps IEEE802.3ab conformity	
cable connector	Hirose 6 pin, 12 V +/- 10%	
conformity LAN Cable	twist pair (category 5e or over)	
LAN cable length	up to 100m (for unshielded twist pair (UTP) cable)	
	external trigger input = opto coupled (open collector)	
digital input/output	GPIO_0 Output (LVTTL)	
	GPIO_1 Output (open collector)	

Connection

Configuration

The system configuration of this camera series is as follows; This camera does not include any accessories. Please prepare other equipments separately.

- Camera: GimaGO easy
- Camera mounting plate (ser. no. 0500030000) (*1)

To fix a camera to a tripod; attach this to the bottom of the camera.

- LAN Cable (*2):

Operational Manual - Rev. 1.02-052013

This cable is used to connect the camera to host equipment. Ethernet packets (stream and control) are transmitted via this cable. Please use a LAN cable that supports 1000BASE-T (Cat 5e or over). This product is able to connect a LAN cable that is equipped with screw lock mechanism.

- Network Interface Card (NIC) (*2):

This is the interface card to connect to the camera. Usually this card is installed to expansion slot of host equipment such as PC etc. Please use 1000BASE-T NIC, supporting Jumbo Frame is recommended.

- PoE Switching HUB etc. (*2):

Use these equipments when you supply power to the camera from PoE. Please use 1000BASE-T equipments, supporting Jumbo Frame is recommended.

*1: Optional part. Contact your dealer / distributor for details of option units. *2: Commercial items. GimaGO easy

Power Supply

In the case of supply DC+12V to the camera:

In the case of supply PoE power to the camera:

Notes :

Operational Manual - Rev. 1.02-052013

Please control the power supply of the camera to be off when plugging in or pulling out the I/O connector. It causes the breakdown.

If your camera is used in a system where its connectors are subjected to strong repetitive shocks, its connectors possibly break down. If you use your camera in such a situation, use an LAN cable with a lock screw, and secure the camera cable as close as possible to the camera body in order to avoid physical shock to the camera connector.

About Camera cable: In the case that electric-wire is long or thin, input voltage may not satisfy specifications of the power supply voltage of the camera by voltage drop. Please check it before use. Lost packets may occur by an electrical characteristic of the transmission line of using Ethernet devices (LAN cable, Network Interface Card, Switching HUB).

Connector Pin Assignment

1. Gigabit Ethernet Interface Connector RJ-45 Jack

Pin No.	I/O	Signal	Function
1	I/O	BI_DA+ / VDC+	Bidirectional Data A (+) / Power (+)
2	1/0	BI_DA- / VDC+	Bidirectional Data A (-) / Power (+)
3	1/0	BI_DB+ / VDC-	Bidirectional Data B (+) / Power (-)
4	1/0	BI_DC+ / VDC+	Bidirectional Data C (+) / Power (+)
5	1/0	BI_DC- / VDC+	Bidirectional Data C (-) / Power (+)
6	1/0	BI_DB- / VDC-	Bidirectional Data B (-) / Power (-)
7	1/0	BI_DD+ / VDC-	Bidirectional Data D (+) / Power (-)
8	1/0	BI_DD- / VDC-	Bidirectional Data D (-) / Power (-)

2. I/O Connector

Connector (Camera side) - HR10A-7R-6PB(73) (HIROSE ELECTRIC CO., LTD.) or equivalency product Plug (Cable side) - HR10A-7P-6S(73) (HIROSE ELECTRIC CO., LTD.) or equivalency product

This camera cable is not an accessory of this product. I/O Connector pin assignment:

ve figu
No.
<u>.</u>
amera

X Abo re is connector view from insert side.

Pin N I/O Signal Function 1 T +12V Power 2 T Line 0 **External Trigger Input** 3 0 Line 1 GPIO_0 Output (LVTTL) GPIO_1 Output (Open Collector) 4 0 Line 2 5 I/O GND I/O_Ground _ GND 6 Ground _

Notes:

Operational Manual - Rev. 1.02-052013

This ca has two ways of power supply,

- Supply from LAN cable (PoE)
- Supply from camera cable (DC+12V ±10%) _

If both PoE and DC+12V are connected, power is supplied from PoE.

I/O Specification

Signal Specification

Trigger Input

Input Circuit	: Opto coupler input
Level	: Low 0 ~ 0.5V, High 3.3 ~ 24.0V
Polarity	: Positive / Negative bipolar (initial factory setting: Negative)
Pulse Width	: Minimum 200µs

Notes of external trigger signal:

Depending on the cable length, the kind of cable and the input current of the trigger input line, Random Trigger Shutter operation may not satisfy timing specification or camera may not receive EXT_TRIG signal. Please check it before use.

GPIO Output

Output Circuit	: LINE1 LVTTL output
	LINE2 Opto coupler output
Level	: LINE1 LVTTL
	LINE2 Open collector
Polarity	: Positive / Negative bipolar (initial factory setting: Negative)
Signal Source	: VD
	TIMER0 ACTIVE
	EXPOSURE ACTIVE
	FRAME ACTIVE
	FRAME TRANSFER
	FRAME TRIGGER WAIT

Circuit diagram

Trigger Input

GPIO Output

I/O Timing

The received external trigger signal delays by internal circuit. And LINE2 output delays from LINE1 output by the difference of internal circuit.

Trigger Input

Fig. Trigger Signal Input Delay

(a) Negative

EXT_TRIG_WIDTH	: The pulse width of the external trigger input (more than 200 μ s).
Toff	: The delay time of falling edge.
Ton	: The delay time of rising edge.
TRIG_IN_WIDTH	: The pulse width of the trigger signal which is received inside of the camera.
Negative trigger	: TRIG_IN_WIDTH = EXT_TRIG_WIDTH - (Ton - Toff)
Positive trigger	: TRIG_IN_WIDTH = EXT_TRIG_WIDTH + (Ton - Toff)

Trigger amplitude	Toff [µs]	Ton [µs]
+3.3V	2.92	26.2
+12V	2.12	31.2
+24V	2.12	31.2

* Toff and Ton are typical values.

Operational Manual - Rev. 1.02-052013

* These values are changed in the operating environment.

GPIO Output

Fig. GPIO Signal Output Delay

(a) ActiveLow

(b) ActiveHigh

Toff	: LINE1~LINE2 falling delay time
Ton	: LINE1~LINE2 rising delay time

Pull-up amplitude	Toff [µs]	Ton [µs]
+3.3V	3	53.2
+12V	4	78.4
+24V	5	94.4

* Toff and Ton are typical values.

Operational Manual - Rev. 1.02-052013

* These values are changed in the operating environment.

GimaGO easy

Anti-chattering process for Trigger input

In the characteristic of the open collector circuit, the signal is skewed. As a result, an invalid ingredient occurs. To filter out an invalid ingredient, this camera has the anti-chattering circuit. Therefore, Random Trigger Shutter operates only in the valid ingredient.

Anti-chattering process

Timing Specification

The image data outputs of this camera series are transferred with the UDP protocol of Gigabit Ethernet. The timing numerical value below is prescribed by absolute prerequisite that GimaGO easy cameras use transmission band without restriction of other node. When there is a node transferring with GimaGO easy concerned, it is not same the numerical value prescribed below.

Image Stream Output (normal shutter)

Model	T1 [ms]	T2 [ms]	Default Framerate [ms]
GE126B			8.0
GE136B	see following	same as	8.0
GE323B	formula	frame rate	25.0
GE422B			33.3

$$T_1 = (T_2 / (\frac{PayloadSize}{SCPS - 36})) \times 3 , T1 = 100 \mu s \text{ or longer.}$$

PayloadSize is total bytes of single frame.

Operational Manual - Rev. 1.02-052013

The formula applies when SCPS (Stream Channel Packet Size) is 1500 byte / packet.

(T1 varies depending on the value of SCPS)

Random Trigger Shutter Operation

Timed mode (Image format: Mono8bit, all pixel readout)

TriggerWidth mode (Image format: Mono8bit, all pixel readout)

Model	Τ3 [μs]	T4 [μs]
GE126B	1.0	2.5
GE136B	1.0	2.5
GE323B	2.2	34.0
GE422B	1.2	7.1

* T1 and T2 are the same as the value of the normal shutter setting.

* T3 and T4 are typical values.

Operational Manual - Rev. 1.02-052013

Notes of random trigger shutter mode:

In the period when FRAME_TRIGGER_WAIT (GPIO signal) is inactive, user must not input external trigger signal to this camera. When the interval of the input trigger signal is extremely short, or when the trigger signal is noisy, there is a possibility of causing the malfunction. In this case, please input a proper trigger signal.

Functions

Overview

This section introduces standard functions of the GimaGO easy cameras. This camera series provides the following functions.

Category	Function	
DeviceControl	DeviceControl	Get device information
	Scalable	Set scalable operation
ImageFormatControl	Binning	Set binning operation
mageronnacontrol	PixelFormat	Select pixel format
	TestImageSelector	Select test pattern
	AcquisitionControl	Execute stream start / stop
AcquisitionControl	TriggerControl	Control trigger operation
	ExposureControl	Control exposure
DigitallOControl	DigitalIOControl	Control GPIO signals
CounterAndTimerControl	TimerControl	Control Timer0Active signal
EventControl	EventControl	Control event packet
	Gain	Set gain
AnalogControl	BlackLevel	Set black level
	Gamma	Set gamma correction
LUTControl	LUTControl	Control LUT
TransportLayerControl	TransportLayerControl	Control transport layer
UserSetControl	UserSetControl	Load / Save user setting
ALCControl	ALCControl	Control ALC operation

Please note that all data and illustrations are subject to error, change and omissions without notice.

DeviceControl

Registers of this category provide various information of the camera. And you can set the free user ID to the camera.

Registers

Register	Visibility	Access	Description
DeviceScanType	Expert	R	Returns the scan type.
DeviceVendorName	Beginner	R	Returns the vendor name.
DeviceModelName	Beginner	R	Returns the model name.
DeviceManufacturerInfo	Beginner	R	Returns the manufacturer information.
DeviceVersion	Beginner	R	Returns the device version.
DeviceFirmwareVersion	Beginner	R	Returns the firmware version.
DeviceSFNCVersionMajor	Beginner	R	
DeviceSFNCVersionMinor	Beginner	R	Returns the SFNC version of GenICam XML.
DeviceSFNCVersionSubMinor	Beginner	R	_
DeviceID	Beginner	R	Returns the Device ID (serial number).
DeviceUserID	Beginner	R/W	Set the free user ID.
DeviceRegistersStreamingStart	Guru	W	Announces the start of registers streaming without immediate checking for consistency.
DeviceRegistersStreamingEnd	Guru	W	Announces the end of registers streaming and perform validation for registers consistency before activating them.
DeviceRegistersCheck	Expert	W	Executes the validation of the current register set for consistency.
DeviceRegistersValid	Expert	R	Returns the result that executed "DeviceRegistersCheck". TRUE: Consistency, FALSE: Inconsistency

Please note that all data and illustrations are subject to error, change and omissions without notice.

www.fadracer.com

Scalable

GimaGO easy cameras provide the scalable mode that can read out a defined area of the screen. In the scalable mode, camera reads out only a necessary area at the normal speed and reads out other areas at high speed. The frame rate can be faster when the vertical height size is small. However, the frame rate cannot be faster only when the horizontal width size is small, due to the operation mechanism of the CCD sensor. Only single rectangle is selectable. Concave or convex shape is not selectable.

Window size: {A × m (H)} × {B × n (V)}
A, B = minimum unit size
m, n = integer
The window size is equal or less than maximum image size.

Start address: {32 x i (H)} x {24 x j (V)}
i, j = integer
The window size is equal or less than maximum image size.

Fig. Scalable

Operational Manual - Rev. 1.02-052013

Registers

Register	Visibility	Access	Description
SensorWidth	Beginner	R	Returns effective width of the sensor in pixels.
SensorHeight	Beginner	R	Returns effective height of the sensor in pixels.
WidthMax	Expert	R	Returns maximum width (in pixels) of the image.
HeightMax	Expert	R	Returns maximum height (in pixels) of the image.
Width	Beginner	R/W	Sets width (in pixels) of the image data.
Height	Beginner	R/W	Sets height (in pixels) of the image data.
OffsetX	Beginner	R/W	Sets horizontal offset (in pixels) from the origin to the region of interest.
OffsetY	Beginner	R/W	Sets vertical offset (in pixels) from the origin to the region of interest.

Setting

- Set image size and image start position

Set the following value to "Width", "Height", "OffsetX", "OffsetY" registers. Setting value is Integer type. "Width", "Height" registers are image size setting. "OffsetX", "OffsetY" registers are image start position setting.

Model	GE126B	GE136B	GE323B	GE422B
Width unit size	160	160	256	160
Height unit size	120	120	192	120
OffsetX unit size	32	32	32	32
OffsetY unit size	24	24	24	24
Minimum unit size	160×120	160×120	256×192	160×120
Maximum unit size (*)	640×480	640×480	1024×768	1280×960

* initial factory setting

<u>Note</u>

Operational Manual - Rev. 1.02-052013

Changing "Width", "Height", "OffsetX", "OffsetY" register value is invalid during image stream data output. White lines may occur in the upper portions of the screen when strong light exists in a wide area during the scalable mode. This is not a malfunction. If white lines occur, adjust the amount of incident light using the lens.

Binning

In the binning mode, a pixel is added with the neighboring pixel(s). This increases the sensitivity of the image. It's alike scalable mode, the frame rate can be faster and Ethernet bandwidth occupation decrease.

Fig. Binning operation (e.g. VGA) 640 320 480 all pixel readout Horizontal binning 240 Horizontal & Vertical Vertical binning binning

Operational Manual - Rev. 1.02-052013

Register	Visibility	Access	Description
BinningHorizontal	Beginner	R/W	Set horizontal binning.
BinningVertical	Beginner	R/W	Set vertical binning.

Setting

- Set binning operation

Set the following value to "BinningHorizontal", "BinningVertical" registers. Setting value is Integer type. "BinningHorizontal" is the number of horizontal pixel(s) to add. And "BinningVertical" is the number of vertical pixel(s) to add.

Model	GE126B	GE136B	GE323B	GE422B
Minimum (*)	1(H)×1(V)	1(H)×1(V)	1(H)×1(V)	1(H)×1(V)
Maximum	2(H)×2(V)	2(H)×2(V)	2(H)×2(V)	2(H)×2(V)

* initial factory setting

Note:

The range of register setting depends on camera model. Changing "BinningHorizontal", "BinningVertical" register value effects Scalable registers. Changing "BinningHorizontal", "BinningVertical" register value is invalid during image stream data output.

Please note that all data and illustrations are subject to error, change and omissions without notice.

PixelFormat

Select a pixel format of image stream data. This camera provides Mono8 bit and Mono10 bit Pixel format.

Registers

Register	Visibility	Access	Description
PixelFormat	Beginner	R/W	Selects a pixel format.
PixelSize	Expert	R	Returns a bit size of image pixel.

Setting

- Select a pixel format

Set a following value to "PixelFormat" register. Setting value is Enumeration type.

Setting value	PixelFormat	PixelSize
Mono8 (*)	Mono 8 bit packed	Bpp8: 8 bits per pixel
Mono10	Mono 10 bit	Bpp10: 10 bits per pixel

* initial factory setting

Note:

Changing "PixelFormat" register value is invalid during image stream data output.

TestImageSelector

The GimaGO easy cameras support the following test pattern data output.

Fig. Test pattern

Registers

Register	Visibility	Access	Description
TestImageSelector	Beginner	R/W	Selects a test pattern.

GimaGO easy

Please note that all data and illustrations are subject to error, change and omissions without notice.

Setting

- Select a test pattern output

Set the following value to "TestImageSelector" register. Setting value is Enumeration type. The camera generates a test pattern.

setting value	function
Off (*)	Test pattern disable(Normal data output)
Black	All pixel = 0 LSB
White	All pixel = 255 @Mono8
BrightGrey	All pixel = 170 @Mono8
DarkGrey	All pixel = 85 @Mono8
GreyHorizontalRamp	Horizontal Ramp

* initial factory setting

AcquisitionControl

Make a setting of image stream and control image stream output. Camera starts image stream output by receiving AcquisitionStrat command. There are some registers that require camera to stop image stream output to change values. The acquisition frame rate is variable. The maximum acquisition frame rate depends on the camera operation mode (scalable, binning, draft, link speed, etc.)

Registers

Register	Visibility	Access	Description
AcquisitionMode	Beginner	R	Returns acquisition mode.
AcquisitionStart	Beginner	W	Executes the image stream output start.
AcquisitionStop	Beginner	W	Executes the image stream output stop.
AcquisitionAbort	Beginner	W	Executes the image stream output abort.
AcquisitionFrameRate	Beginner	R/W	Sets frame rate of image stream.

Setting

- Start image stream output

The camera starts image stream output by executing "AcquisitionStart" register command.

- Stop image stream output

The camera stops image stream output by executing "AcquisitionStop" register command. The camera aborts image stream output by executing "AcquisitionAbort" register command.

- Sets frame rate

Set the following value to "AcquisitionFrameRate" register. Setting value is Float type. The range of register setting depends on camera model, and camera operation mode.

setting value	FrameRate
Minimum	0.0625[Hz]
Maximum (*)	Depend on register setting of "Height" and "Binning" or link speed of interface.

* initial factory setting

Note:

Operational Manual - Rev. 1.02-052013

Changing "AcquisitionFrameRate" register value is invalid during image stream data output. When exposure time setting is longer than frame rate setting, camera operation gives priority to exposure time setting.

Notes on Frame Drops of Image:

Depends on your PC or Gigabit Ethernet interface board configurations, images may not be captured normally (e.g. frame drops may occur). In this case, change to frame rate setting lower.

TriggerControl

This section describes trigger control of AcquisitionControl category for the GimaGO easy cameras. This camera series provides two kinds of exposure synchronization.

- Normal Shutter mode : Free run operation (internal synchronization)
- Random Trigger Shutter mode : Synchronized with external trigger input

In Random Trigger Shutter mode, two kinds of trigger input are available.

- Trigger signal via the I/O connector (HardwareTrigger)
- Trigger command via the Gigabit Ethernet interface (SoftwareTrigger)

The following table shows the combination of operation mode of this camera series.

Table. Operation Mode

Trigger Mode	Synchronization	Exposure Control
Normal Shutter mode	Free run	"ExposureTime" register control
Normal Shutter mode		ALC control
	HardwareTrigger	"ExposureTime" register control
Random Trigger Shutter mode	naruware mgger	Trigger pulse width control
	SoftwareTrigger	"ExposureTime" register control

* The camera operation not mentioned above is not guaranteed.

Operation point of HardwareTrigger is at the edge of trigger signal, and active edge polarity is able to change by register setting. And you can add delay time from trigger edge to exposure start by register setting.

Fig. Trigger Delay

Operational Manual - Rev. 1.02-052013

– Trigger signal	
	TriggerDelay
Exposure	
GbE bus	Image

Details of Random Trigger Shutter operation, refer to "Timing" of "Specification".

Registers

Register	Visibility	Access	Description
TriggerSelector	Beginner	R	Returns the type of trigger.
TriggerMode	Beginner	R/W	Selects Random Trigger Shutter mode.
TriggerSoftware	Beginner	W	Executes software trigger.
TriggerSource	Beginner	R/W	Selects trigger source of Random Trigger Shutter.
TriggerActivation	Beginner	R/W	Selects trigger polarity of hardware trigger.
TriggerDelay	Expert	R/W	Sets trigger delay.

Setting

- Selects trigger mode

Set the following value to "TriggerMode" register. Setting value is Enumeration type.

setting value	Operation Mode
Off (*)	Normal Shutter Mode
On	Random Trigger Shutter mode

* initial factory setting

- Select trigger source

Set the following value to "TriggerSource" register. Setting value is Enumeration type.

setting value	Trigger source
Line0 (*)	Hardware trigger
Software	Software trigger

* initial factory setting

- Grabs image stream by software trigger

When executes "TriggerSoftware" register command, software trigger command is generated. And the camera starts exposure by receiving software trigger command in software trigger mode

- Change trigger polarity (HardwareTrigger operation only)

Set the following value to "TriggerActivation" register. Setting value is Enumeration type.

setting value	Polarity
FallingEdge (*)	Negative
RisingEdge	Positive

Operational Manual - Rev. 1.02-052013

* initial factory setting

GimaGO easy

- Sets trigger delay (HardwareTrigger operation only)

Set the following value to "TriggerDelay" register. Setting value is Float type. Adds delay time from trigger edge to exposure start.

setting value	TriggerDelay[ns]
Minimum (*)	0.00
Maximum	4095.00

* initial factory setting

Note:

Changing "TriggerMode", "TriggerSource", "TriggerActivation" registers value is invalid during image stream data output. When SoftwareTrigger operation, the period from execution of "TriggerSoftware" to grab image is an indefinite.

Please note that all data and illustrations are subject to error, change and omissions without notice.

www.fadracer.com

ExposureControl

GimaGO easy cameras are able to adjust exposure time by using electric shutter control. This camera series provides two kinds of exposure time control mode.

- MANUAL mode: The exposure time is determined by "ExposureTime" register setting value.
- AE mode: The exposure time is adjusted automatically by the photometry of the image.

By combining AE mode and AGC (ALC mode), it can adjust a wide range of brightness fluctuation of the subject. About details of ALC mode, refer to "ALC Control" of "Functions".

When HardwareTrigger operation, you are able to control the exposure time by pulse width of external trigger input signal.

Fig. Exposure control

- Timed mode

Trigger	ExposureTime
Exposure	
GbE bus	Image

- TriggerWidth mode

Trigger	\neg
	Pulse Width
Exposure	
GbE bus	Image

Registers

Operational Manual - Rev. 1.02-052013

Register	Visibility	Access	Description
ExposureMode	Beginner	R/W	Selects manual exposure mode.
ExposureTime	Beginner	R/W	Sets absolute exposure time(timed mode).
ExposureAuto	Beginner	R/W	Sets AE operation.

GimaGO easy

Setting

- Selects exposure control mode

Set the following value to "ExposureMode" register. Setting value is Enumeration type.

setting value	Manual exposure mode
Timed (*)	"ExposureTime" register control
TriggerWidth	Trigger pulse width control

* initial factory setting

In Normal Shutter mode, the exposure time is determined by "ExposureTime" register value regardless of "ExposureMode" register setting.

- Sets exposure time (timed mode only)

Set the following value to "ExposureTime" register. Setting value is Float type. Set the exposure time of Normal Shutter mode, and Random Trigger Shutter -Timed mode operation.

Model	GE126B	GE136B	GE323B	GE422B
ExposureTime (*)	8000 [µs]	8000 [µs]	25000 [µs]	33333 [µs]
ExposureTimeMin	10 [µs]	10 [µs]	30 [µs]	30 [µs]
ExposureTimeMax	16000000 [μs]			

* initial factory setting

- Set auto exposure

Set the following value to "ExposureAuto" register. Setting value is Enumeration type. Select the exposure control.

setting value	function
Off (*)	Manual Exposure control
On	Auto Exposure control

* initial factory setting

Note:

Changing "ExposureMode" register value is invalid during image stream data output.

DigitallOControl

The cameras provide GPIO output selected by the register setting. The polarity of the signal is able to switch by the register setting. The following chart shows the specifications of the selectable signals.

Fig. Selectable signals

Registers

Register	Visibility	Access	Description
LineSelector	Expert	R/W	Selects the Line of I/O connector.
LineMode	Expert	R	Returns the direction of each Line signal.
LineInverter	Expert	R/W	Selects the polarity of GPIO output signal.
LineSource	Expert	R/W	Selects the source of the output signal.
LineFormat	Expert	R	Returns the type of each Line signal.

Setting

- Select the Line of the I/O connector

Set the following value to "LineSelector" register. The setting value is Enumeration type.

LineSelector	I/O connector pin assignment	LineMode	LineFormat
Line0 (*)	2 pin: External Trigger Input	Input	OptoCoupled: OpenCollector
Line1	3 pin: GPIO0 Output	Output	TTL: LVTTL
Line2	4 pin: GPIO1 Output	Output	OptoCoupled: OpenCollector

* initial factory setting

- Select the polarity of GPIO output signal

Set the following value to "LineInverter" register. The setting value is Boolean type.

FALSE (*)	ActiveLow
TRUE	ActiveHigh

* initial factory setting

- Select the source of GPIO output signal

Set the following value to "LineSource" register. Setting value is Enumeration type.

LineSource	Signal description
Off (*)	No output.
FrameTriggerWait	Indicating waiting a Random Trigger Shutter.
Frameinggerwalt	An External trigger is input during this period, exposure starts immediately.
FrameTransfer	Period of transferring image data on Ethernet bus.
FrameActive	Period from exposure start to CCD transfer completion.
ExposureActive	Period from exposure start to exposure end.
Timer0Active This signal can be used as strobe control signal.	
TimeroActive	The delay time and pulse width of this signal are configurable.
VD	Internal VD sync signal.

* initial factory setting

<u>Note</u>

Operational Manual - Rev. 1.02-052013

About the details of TimerOActive signal, refer to "TimerControl" of "Functions".

TimerControl

This camera series is able to generate TimerOActive signal, derived from exposure start, by register setting. This signal can be used as strobe control signal.

Fig. Timer0Active

Registers

Register	Visibility	Access	Description
TimerSelector	Expert	R	Returns the name of the timer that selected.
TimerDuration	Expert	R/W	Sets the width of Timer0Active signal.
TimerDelay	Expert	R/W	Sets the delay of Timer0Active signal.
TimerTriggerSource	Expert	R	Returns the timing that is the basic of the timer

Setting

Operational Manual - Rev. 1.02-052013

- Set the width of Timer0Active pulse

Set the following value to "TimerDuration" register. Setting value is Float type.

TimerDuration	Pulse width
Minimun (*)	0.00[µs]
Maximum	4095.00[µs]

* initial factory setting

- Set the delay of Timer0Active pulse

Set the following value to "TimerDelay" register. Setting value is Float type.

TimerDelay	Dlay value
Minimun (*)	0.00[µs]
Maximum	4095.00[µs]

* initial factory setting

EventControl

This camera series provides Event notifications of ALC and SoftwareTrigger information.

Registers

Register	Visibility	Access	Description

EventControl			
EventSelector	Expert	R/W	Selects the type of Event notifications.
EventNotification	Expert	R/W	Sets the activation of Event
			notifications.

EventFrameTriggerData			
EventFrameTrigger	Expert	R	Returns Event ID of FrameTrigger type.
EventFrameTriggerTimestamp	Expert	R	Returns the timestamp at the time of
			Event.

entALCLates	stInforma	ationData
Expert	R	Returns Event ID of
		ALCLatestInformation type.
Expert	R	Returns the timestamp at the time of
		Event.
Expert	R	Returns the total luminance at the time
		of Event.
Expert	R	Returns the average luminance at the
		time of Event.
Expert	R	Returns the exposure time at the time
		of Event.
Expert	R	Returns the gain at the time of Event.
	Expert Expert Expert Expert Expert	ExpertRExpertRExpertRExpertRExpertR

EventALCConvergedDat	а
LVEINALCCONVErgeuDat	a

		-	
EventALCConverged	Expert	R	Returns Event ID of ALCConverged type.
EventALCConvergedTimestamp	Expert	R	Returns the timestamp at the time of
			Event.
EventALCConvergedLuminanceTotal	Expert	R	Returns the total luminance at the time
			of Event.
EventALCConvergedLuminanceAvera	Expert	R	Returns the average luminance at the
ge			time of Event.
EventALCConvergedExposureTime	Expert	R	Returns the exposure time at the time
			of Event.
EventALCConvergedGain	Expert	R	Returns the gain at the time of Event.

Setting

- Select the type of Event notifications

Set the following value to "EventSelector" register. The setting value is Enumeration type.

setting value	Type of Event notification
FrameTrigger (*)	Information of SoftwareTrigger operation
ALCLatestInformation	Information of ALC update
ALCConverged	Information of ALC convergence

* initial factory setting

- Set the activation of Event notifications

Set the following value to "EventNotification" register. The setting value is Enumeration type.

setting value	Event notification
Off (*)	Inactive
On	Active

* initial factory setting

<u>Gain</u>

This section describes Gain control of AnalogControl category for the GimaGO easy cameras. This control adjusts the gain of the image.

Fig. Gain

This camera series provides two kinds of Gain control mode.

- ManualControl (MANUAL) : The Gain value is determined by "Gain" register setting value.
- AutoGainControl (AGC): The Gain value is adjusted automatically by the photometry of the image.

Registers

Register	Visibility	Access	Description
GainSelector	Beginner	R	Returns the luminance component of Gain setting.
Gain	Beginner	R/W	Sets the absolute Gain.
GainAuto	Beginner	R/W	Sets activation of AGC mode.

Setting

Operational Manual - Rev. 1.02-052013

- Set Manual Gain

Set the following value to "Gain" register. Setting value is Float type. This setting value is valid only at Manual Gain mode setting.

setting value	Gain
Minimum (*)	0.00 [dB]
Maximum	18.00 [dB]

* initial factory setting

GimaGO easy

The formula of Gain value is as follows:

output signal = input signal x 10
$$\frac{Gain}{20}$$

- Select Gain control mode

Set the following value to "GainAuto" register. Setting value is Enumeration type.

setting value	Mode
Off (*)	Manual Gain Control (MANUAL)
Continuous	Auto Gain Control (AGC)

* initial factory setting

<u>Note</u>

About the details of AGC mode, refer to "ALCControl" of "Functions".

Notes on gain setting:

Setting the gain value too high increases noises. When you adjust the brightness of the image, I ask you to have final image quality checked with your environment.

BlackLevel

This section describes BlackLevel control of AnalogControl category for the GimaGO easy cameras. This control adjusts the black level of the image. It is adjustable from -5% to +25% as white saturation level is 100%. However, when BlackLevel is lower than 0[%], the image level may not be saturated.

Fig. Black Level

Registers

Register	Visibility	Access	Description
BlackLevelSelector	Beginner	R	Returns the luminance component of Black Level setting.
BlackLevel	Beginner	R/W	Sets the absolute Black Level.

Setting

Operational Manual - Rev. 1.02-052013

- Set Black Level

Set the following value to "BlackLevel" register. Setting value is Float type.

BlackLevel	setting value
Minimum	-5.00[%]
Maximum	+25.00[%]

* initial factory setting = 0.00[%]

<u>Gamma</u>

This section describes Gamma correction of AnalogControl category for the GimaGO easy cameras. This function allows you to apply a gamma correction to the output images.

Fig. Gamma correction

Registers

Register	Visibility	Access	Description
Gamma	Beginner	R/W	Sets the Gamma correction.

Setting

- Set Gamma correction

Set the following value to "Gamma" register. Setting value is Float type.

Gamma	setting value
Minimum	0.45
Maximum (*)	1.00

* initial factory setting

LUTControl

This function allows you to apply the arbitrary LUT(input: 10bit, output: 10bit) to the output images.

Registers

Register	Visibility	Access	Description
LUTSelector	Expert	R	Returns the luminance component of LUT process.
LUTEnable	Expert	R/W	Sets the activation of LUT process.
LUTIndex	Guru	R/W	Sets the input level of LUT process.
LUTValue	Guru	R/W	Sets the output level of LUT process.

Setting

- Set the activation of LUT

Set the following value to "LUTEnable" register. The setting value is Boolean type.

setting value	function
FALSE (*)	Inactivation
TRUE	Activation

* initial factory setting

- Set the input/output value of LUT

Set the following value to "LUTIndex", "LUTValue" registers. These setting values are Integer type. "LUTIndex" register value is input level of LUT process, and "LUTValue" register value is output level of LUT process.

LUTIndex / LUTValue	setting value
Minimum (*)	0
Maximum	1023

* initial factory setting

TransportLayerControl

This camera series conforms to GigE vision 1.2 and GenICam 2.3.

Registers

Register	Visibility	Access	Description
PayloadSize	Expert	R	Returns the payload size of the image data.
GevVersionMajor	Expert	R	Deturne the version of the Circ Mision enstand
GevVersionMinor	Expert	R	- Returns the version of the GigE Vision protocol.
	Curry	R	Returns the endian of the register.
GevDeviceModelsBigEndian	Guru	ĸ	True: BigEndian, False: LittleEndian
GevDeviceClass	Guru	R	Returns the device class of this camera.
GevDeviceModeCharacterSet	Guru	R	Returns the character set of the string register.
GevInterfaceSelector	Beginner	R	Returns physical network interface to control.
GevMACAddress	Beginner	R	Returns MAC address of the network interface.
GevSupportedOptionSelector	Expert	R/W	Selects the GEV option to interrogate for
			existing support.
GevSupportedOption	Expert	R	Returns if the selected GEV option is supported.
GevCurrentIPConfigurationLLA	Beginner	R/W	Sets the activation of LLA IP Configuration.
GevCurrentIPConfigurationDHCP	Beginner	R/W	Sets the activation of DHCP IP Configuration.
GevCurrentIPConfigurationPersist	Beginner	R/W	Sets the activation of Persistent IP
entIP			Configuration.
GevCurrentIPAddress	Beginner	R	Returns Current IP Address.
GevCurrentSubnetMask	Beginner	R	Returns Current IP Subnet Mask.
GevCurrentDefaultGateway	Beginner	R	Returns Current IP Default Gateway.
GevIPConfigurationStatus	Beginner	R	Returns Current IP Configuration.
GevFirstURL	Guru	R	Returns First URL of GenICam XML.
GevSecondURL	Guru	R	Returns Second URL of GenICam XML.
GevNumberOfInterfaces	Expert	R	Returns the number of physical network
			interfaces.
GevPersistentIPAddress	Beginner	R/W	Sets Persistent IP Address.
GevPersistentSubnetMask	Beginner	R/W	Sets Persistent IP Subnet Mask.
GevPersistentDefaultGateway	Beginner	R/W	Sets Persistent IP Default Gateway.
GevLinkSpeed	Expert	R	Returns the speed of transmission negotiated.

Register	Visibility	Access	Description
GevMessageChannelCount	Expert	R	Returns the number of message channels supported.
GevStreamChannelCount	Expert	R	Returns the number of stream channels supported.
GevHeartbeatTimeout	Guru	D /\\/	Sets the current heartbeat timeout [ms].
GevneartbeatTimeout		R/W	Initial factory setting: 3000[ms], Setting range: 0~4294967295[ms
GevTimestampTickFrequency	Beginner	R	Returns the number of timestamp ticks [Hz].
GevTimestampControlLatch	Expert	W	Latches the current timestamp counter into GevTimestampValue.
GevTimestampControlReset	Expert	W	Resets the timestamp counter to 0.
GevTimestampValue	Expert	R	Returns the latched 64-bit value of the timestamp counter.
			Sets the maximum randomized delay of the Discovery ACK
GevDiscoveryAckDelay	Expert	R/W	command [ms].
			Initial factory setting: 50 [ms], Setting range: 0~1000 [ms]
GevGVCPHeartbeatDisable	Expert	R/W	Disables the GVCP heartbeat.
	Expert		True: Disable, False: Enable
GevCCP	Guru	R/W	Sets the device access privilege of an application.
GevPrimaryApplicationSocket	Guru	R	Returns the UDP source port of the primary application.
GevPrimaryApplicationIPAddress	Guru	R	Returns the address of the primary application.
GevMCPHostPort	Guru	R/W	Sets the port to which the device must send messages.
GevMCDA	Guru	R/W	Sets the destination IP address for the message channel.
GevMCTT	Guru	R/W	Sets the transmission timeout value of the message channel [ms]
Germerr	Guru		Initial factory setting: 300 [ms], Setting range: 0~4294967295 [ms
GevMCRC	Guru	R/W	Sets the number of retransmissions of the message channel.
Cermence	Guit	1,7 10	Initial factory setting: 2, Setting range: 0~4294967295
GevMCSP	Guru	R	Returns the source port for the message channel.
GevStreamChannelSelector	Expert	R	Returns the stream channel to control.
GevSCPDirection	Guru	R	Returns the direction of the stream channel.
GevSCPInterfaceIndex	Guru	R	Returns Index of network interface of the stream channel.
GevSCPHostPort	Guru	R/W	Sets the port of the stream channel.
GevSCPSFireTestPacket	Guru	R/W	Sets the activation of the test packet.
	Guit	1,7 00	True: Active, False: Inactive
GevSCPSDoNotFragment	Guru	R/W	Sets the "do not fragment" bit of IP header of each stream packet
	04.4	1,7 00	True: Enable, False: Disable
GevSCPSBigEndian	Guru	R/W	Selects the endian of multi-byte pixel data for this stream.
_			True: BigEndian, False: LittleEndian
GevSCPSPacketSize	Expert	R/W	Sets the stream packet size [byte/packet].
GevSCPD	Expert	R/W	Sets the delay to insert between each packet for the stream channel.
GevSCDA	Guru	R/W	Sets the destination IP address of the stream channel.
GevSCSP	Guru	R	Returns the source port of the stream channel.
BlockStartDelay	Expert	R/W	Sets the delay to insert between each image frame for the stream channel.

Setting

- Set the IP Configuration

Set the following value to "GevCurrentIPConfigurationLLA", "GevCurrentIPConfigurationDHCP", "GevCurrentIPConfigurationPersistentIP" registers. These setting values are Boolean type. Set these registers in conformity with your system.

setting value	IPConfiguration
FALSE	Inactive
TRUE	Active

- Set the camera access privilege of an application.

Set the following value to "GevCCP" register. The setting value is Enumeration type. You can configure multi host system by using this function.

setting value	Access Right	
OpenAccess	Secondary access that can only monitor the image and read the register. (MonitorAccess)	
ExclusiveAccess (*)	Primary access that can monitor the image and control the register.	
	Other host can not access the camera.	
ControlAccess	Primary access that can monitor the image and control the register.	
	Other host can have privilege of Secondary access only.	

* initial factory setting

- Set the Packet Size of the stream channel

Set the following value to "GevSCPSPacketSize" register. The setting value is Integer type. Set the register in conformity with your system (NIC, Switching HUB and the network condition). If the register setting is not in conformity with your system, your host can not grab the image properly.

PacketSize	setting value
Minimum	72[byte/packet]
Maximum	16364[byte/packet]

Operational Manual - Rev. 1.02-052013

* initial factory setting = 1500[byte/packet]

Notes on packet size setting:

When the packet size setting is less than 1500[byte/packet], image may not be captured properly (e.g. dropping frames). In this case, change the packet size more than 1500[byte/packet]. And we recommend you to use network equipments (NIC, Switching HUB, etc.) supporting Jumbo Frame.

- Set the SCPD BlockStartDelay

Set the following value to "GevSCPD", "BlockStartDelay" registers. These setting values are Integer type.

Fig. Packet delay

	GevSCPD	BlockStartDelay
Minimum (*)	0	0
Maximum	OxFFFFFFF	0xFFFFE795

* initial factory setting

UserSetControl

You are able to save a user setting to the non-volatile memory of the camera. There are three user memory banks for user setting. By using user memory, you are able to restore frequently used settings at the time of next start-up. The following table is the list of registers applied by "UserSetLoad"/"UserSetSave".

Table. The register list applied by "UserSetLoad"/"UserSetSave"

Category	Register	Category	Register
	Width		TimerDuration
	Height	CounterAndTimerControl	TimerDelay
	OffsetX		TimerTriggerSource
ImageFormatControl	OffsetY		Gain
	BinningHorizontal		GainAuto
	BinningVertical	AnalogControl	BlackLevelSelector
	PixelFormat		BlackLevel
	AcquisitionMode		Gamma
	AcquisitionFrameRate		ALCReferenceLuminance
AcquisitionControl	TriggerMode		ALCExposureValue
	TriggerSource		ALCTolerance
	TriggerActivation	ALCControl	ALCThrottle
	TriggerDelay	ALCCONTO	ALCExposureTimeMin
	ExposureMode		ALCExposureTimeMax
	ExposureTime		ALCGainMin
	ExposureAuto		ALCGainMax
DigitallOCantral	LineInverter	UserSetControl	UserSetDefaultSelector
DigitalIOControl	LineSource		

Registers

Register	Visibility	Access	Description
UserSetSelector	Beginner	R/W	Selects a bank of user setting.
UserSetLoad	Beginner	W	Executes load of the user setting.
UserSetSave	Beginner	W	Executes to save the user setting.
UserSetDefaultSelector	Beginner	R/W	Selects a bank of user setting when camera powers up.

Setting

- Select a bank of the user setting

Set the following value to "UserSetSelector" register. The setting value is Enumeration type. Select the bank of user setting for "UserSetLoad" and "UserSetSave".

setting value	Description	Save	Load
Default (*)	Memory bank to read initial factory setting data.	×	0
UserSet1	Memory bank 1 for user setting.	0	0
UserSet2	Memory bank 2 for user setting.	0	0
UserSet3	Memory bank 3 for user setting.	0	0
SafeMode	Memory bank for maintenance.	×	0

* initial factory setting

"Default" and "SafeMode" banks are only able to load data. If you want to restore a camera setting to the initial factory setting, please load "Default" bank.

- Load/Save a user setting

When execute "UserSetLoad", the camera loads the user setting of bank that is selected in "UserSetSelector" register and applies them. When execute "UserSetSave", the camera saves a user setting that was applied to the bank that is selected in "UserSetSelector" register.

- Load the user setting at the time of start-up

Set the following value to "UserSetDefaultSelector" register. The setting value is Enumeration type. When select "UserSetDefaultSelector" register and save it, the camera loads the user setting of bank that is selected in "UserSetDefaultSelector" register and applies them at the time of next start-up.

Note:

Changing "UserSetLoad" register value is invalid during image stream data output.

ALCControl

This camera series provides some registers to adjust the various parameter of ALC operation. When the camera operates at ALC, AE operation is prior to AGC operation.

Fig. ALC operation

ALCLatestInformation EventALCConverged Event

Registers

Register	Visibilit	Access	Description
	у		
ALCPhotometricAreaSize	Expert	R/W	Selects a photometric area size which is used to measure luminance.
ALCReferenceLuminance	Expert	R/W	Sets a value of the reference luminance when any ALC feature is
			running.
ALCExposureValue	Expert	R/W	Sets an EV level when any ALC feature is running.
ALCTolerance	Expert	R/W	Sets a tolerance range for the reference luminance when any ALC
			feature is running.
ALCThrottle	Expert	R/W	Sets a value of feedback fraction when any ALC feature runs.
ALCLock	Expert	R/W	Sets the lock of ALC operation.
ALCExposureTimeMin	Expert	R/W	Sets a minimum value of the exposure time when ALC(AE) feature is
			running.
ALCExposureTimeMax	Expert	R/W	Sets a maximum value of the exposure time when ALC(AE) feature is
			running.
ALCGainMin	Expert	R/W	Sets a minimum value of the gain when ALC(AGC) feature is running.
ALCGainMax	Expert	R/W	Sets a maximum value of the gain when ALC(AGC) feature is running.

Setting

- Set photometric area size for measuring luminance

Set the following value to "ALCPhotometricAreaSize" register. The setting value is Enumeration type.

setting value	photometric area size
Full (*)	100% (Full pixel)
Medium	64% (H: 80% x V: 80%)
Small	16% (H: 40% x V: 40%)

* initial factory setting

Fig. ALC Area

- Set a value of the reference luminance

Set the following value to "ALCReferenceLuminance" registers. These setting values are Integer type. An Image luminance at ALC operation converges on a reference luminance. (at ALCExposureValue = 0 [eV]).

ReferenceLuminance	setting value
Minimum	0
Maximum	255

* initial factory setting = 84

- Set a ExposureValue of ALC operation

Set the following value to "ALCExposureValue" register. Setting value is Float type. When set "ALCExposureValue" register, add a correction value for a convergence value.

ExposureValue	setting value
Minimum	-2.00 [eV]
Maximum	+2.00 [eV]

* initial factory setting = 0.00 [eV]

Final convergence value by setting "ALCExposureValue" register is determined by the following formula. Final convergence value = ReferenceLuminance x 2^{ExposureValue}

- Set a tolerance range of ALC operation

Set the following value to "ALCTolerance" register. The setting value is Float type. Set convergence tolerance level for the ReferenceLuminance. When tolerance level is small, the convergence level become more accurate, but it takes longer time to converge.

Tolerance	setting value
Minimum	0.00 [%]
Maximum	50.00 [%]

Operational Manual - Rev. 1.02-052013

* initial factory setting = 1.00 [%]

- Set a value of feedback fraction of ALC operation

Set the following value to "ALCThrottle" register. Setting value is Float type.

Throttle	setting value
Minimum	1.00 [%]
Maximum	100.00 [%]

* initial factory setting = 75.00 [%]

- Set the lock of ALC operation

Set the following value to "ALCLock" register. The setting value is Boolean type. You can lock ALC operation by using this function.

setting value	Activation
FALSE (*)	inactive
TRUE	active

* initial factory setting

Operational Manual - Rev. 1.02-052013

- Set a range of AE operation

Set the following value to "ALCExposureTimeMin", "ALCExposureTimeMax" register. Setting value is Float type. AE mode operates at a range of a register value. You shall set "ExposureTimeMin" < "ExposureTimeMax". If you set "ExposureTimeMax" longer than a frame rate period, a frame rate may be slower than the register setting. The range of register setting depends on camera model, and camera operation mode.

AE range	ExposureTimeMin	ExposureTimeMax
Minimum	as same as maximum value of Manual mode	more than ExposureTimeMin
Maximum	less than ExposureTimeMax	as same as minimum value of Manual mode

* initial factory setting: ExposureTimeMin = minimum value, ExposureTimeMax = 1 frame

- Set a range of AGC operation

Set the following value to "ALCGainMin", "ALCGainMax" register. Setting value is Float type. AGC mode operates at a range of a register value. You shall set "GainMin" < "GainMax".

AGC range	GainMin	GainMax
Minimum	0.00[dB] (*)	more than GainMin
Maximum	less than GainMax	18.00[dB] (*)

* initial factory setting

<u>Note</u> ALC operation at Random Trigger Shutter mode is not guaranteed.

Technical Support

NET ensures the conformity of its product to be reliable and free from defects during manufacturing by testing all the cameras before release. However, unexpected problems and technical issues may come up due to the complexity of the product.

In case you require technical support, contact the agent near you or contact NET directly at the following locations:

TEL: 02-2585-8592 FAX: 02-2598-8802 E-MAIL:sales.tp@fadracer.com WEBSITE:www.fadracer.com

GimaGO easy