最新訊息
鏡頭目錄
Adaptive Vision Studio
HYPERSPECTRAL (HSI) CAMERAS
Cooled Camera
 

NanEye Camera article on Biophotonics Magazine
分享
 

Wafer-level packaging, CMOS circuits and MOEMS technologies help realize sub-1-mm camera modules. 

Imaging and small-sized digital camera modules have become ubiquitous. Only a few years ago, a digital camera recorder was still a considerable investment, and its size and weight made users consider whether to drag it along or not. Today, the presence of digital cameras everywhere seems self-evident. Smartphones usually implement more than one camera, and game consoles are gearing up to combine video, digital stills and 3-D interaction with the total gaming experience, resulting in four or more cameras per device. 

The expansion of cameras has only been possible by their miniaturization, both in size and in cost. As with many innovations in the electronics business, the engine behind driving down size and cost, as well as increasing performance, comes from the semiconductor manufacturing industry’s Moore’s law, which predicts that the size of transistors will halve – and, consequently, performance of integrated semiconductor devices will double – every 1.5 years. The outcome of this race to ever-smaller and better-performing digital processor and memory chips can be applied to digital imaging, making it now possible to realize image sensors with pixels as small as 1 μm. This is driven mainly by the consumer electronics industry, where 1.1-μm pixel size is in mass production and some companies are already working on 0.9-μm pixels. 

Read Full Article …. 

 
 
特別聲明:本網站為汎叡有限公司版權所有,請尊重智慧財產權,未經允許請勿任意轉載、複製或做商業用途
所使用的所有商標名稱, 分屬各商標註冊公司所有。
Copyright c 2009 Fadracer Technology Inc. All Rights Reserved.
汎叡有限公司 TEL:+886-2-2585-8592 FAX:+886-2-2598-8802 E-MAIL:[email protected]